
Software Architecture Themes
In JPL’s Mission Data System1

Daniel Dvorak, Robert Rasmussen, Glenn Reeves, Allan Sacks
Jet Propulsion Laboratory

California Institute o f Technology
4800 Oak Grove Drive

Pasadena, CA 9 1 109-8099

{ dldvorak,rrasmssn,greeves,asacks} @pop.jpl.nasa.gov
818-393-4109

Abstract-The rising frequency of NASA mission launches
has highlighted the need for improvements leading to faster
delivery of mission software without sacrificing reliability.
In April 1998 Jet Propulsion Laboratory (JPL) initiated the
Mission Data System (MDS) project to rethink the mission
software l i fecyc lef rom early mission design to mission
opera t iopand make changes to improve software
architecture and software development processes. As a
result, MDS has defined a unified flight, ground, and test
data system architecture for space missions based on object-
oriented design, component architecture, and domain-
specific frameworks. This paper describes several
architectural themes shaping the MDS design and how they
help meet objectives for faster, better, cheaper mission
software.

1.
2.
3.
4.
5.
6.
7 .

JPL’s

TABLE OF CONTENTS

INTRODUCTION
THE MISSION DATA SYSTEM PROJECT
THE MDS VISION
ARCHITECTURAL THEMES
CUSTOMER BENEFITS

ACKNOWLEDGEMENTS
RELATED WORK

1. INTRODUCTION

deep space missions tend to be one-of-a-kind, each
with distinct science objectives, instruments, and mission
plans. Until recently, these missions were spaced years
apart, with little attention to software reuse, given the
relatively rapid pace of computer technology and computer
science. Also, since radiation-hardened flight computers
remain years behind their commercial counterparts in speed
and memory, flight software has typically been highly
customized and tuned for each mission. Thus, when JPL
launched six missions in six months between October 1998
and March 1999, it wasn’t surprising that there was little
software reuse among them, except in the ground system.

However, despite the uniqueness of each mission, they each
had to independently design and develop mechanisms for
communication. commanding, attitude control, navigation,
power management, fault protection, and many other
standard tasks, yet there was no common architecture or
frameworks for them to build upon. Clearly, in an era of
monthly missions, this is an inefficient way to use software-
engineering resources.

Another change affecting our approach to deep space
mission software is the advent of high performance,
commercially standard flight computing systems suitable for
flight use. Sufficient capability now exists to justify
investing a substantial part of the system resources to
reusable designs and “off-the-shelf’ components, which are
typically not as efficient as customized code.

This additional capability is also a timely boost to increased
autonomy that new missions require as we move into an era
of in situ exploration.

2. THE MISSION DATA SYSTEM PROJECT

In order to use software-engineering resources more
effectively and to sustain a quickened pace of missions,
while supporting the steady advances required by new
missions, JPL initiated a project in April 1998 to define and
develop an advanced multi-mission architecture for an end-
to-end information system for deep-space missions. The
system, named “Mission Data System” (MDS), is aimed at
several institutional objectives: earlier collaboration of
mission, system and software design; simpler, lower cost
design, test, and operation; customer-controlled complexity;
and evolvability to in situ exploration and other autonomous
applications. JPL’s Telecommunication and Mission
Operations Directorate (TMOD) manages the MDS project.

3. THE MDS VISION

Software development for space missions is obviously part

’ 0-7803-5846-5/00/$10.00 0 2000 IEEE

mailto:pop.jpl.nasa.gov

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I Thermal I

Figure 1. In the traditional approach, subsystem teams worked in isolation and created individual solutions to
shared problems. In the architectural approach they apply standard MDS frameworks and services.

of a much larger endeavor, but software plays a central and
increasingly important system role that must be reconciled
with the overall systems engineering approach adopted by a
project.

Software and systems engineering are highly interdependent
for two reasons. First, software needs systems engineering
products. It must know how things work. It needs to
understand interfaces. And it has to honor the system
engineer's intentions. Second, software is essential to
systems engineering. It largely determines the behavior and
performance of a system. It manages the capabilities and
resources of a system. And it presents one's operational
view of a system.

To put it in another way, both systems engineering and
software deal in the more abstract aspects of a system. These
are issues that apply from the earliest conception of a
mission until the last day of flight operation. They apply
across all constituents of a project and to all elements of the
environment affecting the system. Therefore, it is essential
that systems and software share a common approach to
defining, describing, developing, understanding, testing,
operating, and visualizing what systems do. This is the
fundamental vision and philosophy behind the MDS design:
that software is part of and contributes substantially to a new
systems engineering approach that seamlessly spans the
entire project breadth and life cycle.

This paper describes several architectural themes shaping
the MDS design. These themes have been highlighted
because they have broad impact on the design and because
they differ from earlier practices. However, the themes are
not novel ideas; they draw proven ideas from control
systems, robotics, data networking, software engineering,
and artificial intelligence.

Although most of these themes have resulted from a desire

to improve flight so f twareand have compelling examples
there-they apply equally to ground software. Also, these
themes apply equally to all kinds of robots, whether
spacecraft or probes or rovers.

4. ARCHITECTURAL THEMES

Theme: Take An Architectural Approach

Construct subsystems from architectural elements, not the
other way around-It has been traditional in JPL missions to
divide the work along at least five dimensions: flight-
ground-test, design-test-operations, engineering-
science, downlink-uplink, and subsystems (navigation-
power-propulsion-telecom, etc). With the work so
compartmentalized, software engineers naturally applied
their own customized solutions within each realm, resulting
in minimal reuse and requiring many iterations at integrating
the subsystems. The net result was always architecture
constructed from subsystems.

In MDS there is a quest to find common problems and
create common solutions that can then be tailored to
particular problems. We refer to this collection of common
solutions as the MDS framework. It provides shared core
elements among different systems, eliminates redundant or
conflicting developments within systems, and assures
uniformity across the architecture in order to improve
operability and robustness.

Object oriented analysis and design accomplishes this to
some extent, but a fundamental driver in this approach has
been the recognition that space system designs are always
tightly coupled, despite best attempts. Highly constrained
resources demand it. A key software role is to make this
coupling manageable. Therefore, managing interactions is
also a foundation of good design. For example, different
activities in different subsystems issue commands that
consume power, and they can potentially interfere with each

other unless there is a coordination service that keeps track
of available power and that has authority to control each
device. Creating such a coordination service enables a
cleaner simpler design because it controls interactions
through a common service rather than through private
subsystem-to-subsystem agreements, thereby decreasing the
apparent coupling between subsystems. It similarly
simplifies unit testing of subsystems. The net result from
applying this approach is that subsystems get constructed
from architectural elements, not the other way around.

Theme: Ground-to-Flight Migration

Migrate capability from ground to flight, when appropriate,
to simplifj, operations-MDS takes a unified view of flight
and ground tasks because of opportunity and need. With
increasingly powerful flight processors the opportunity
exists to migrate to the spacecraft (or rover) some functions
that have traditionally been performed on the ground,
thereby reducing the need for flight-ground communication.
Such migration might occur well after launch, after ground
operators have gained experience with the real spacecraft
and have decided that some activities can be automated,
without further human-in-the-loop control. Migration can
involve using the same code in flight as on the ground, but
frequently flight implementations are different because they
exploit the immediacy of their interaction with the
spacecraft. Nevertheless, uniformity in addressing other
system elements permits these migrations to take place with
minimal perturbation to the rest of the system.

More importantly, the need for such migration exists in
order to accomplish missions that must react quickly to
events, without earth-in-the-loop light-time delays, such as
autonomous landing on a comet, and rover explorations on
Mars. By adopting a unified architecture, we assure that the
wide range of possibilities offered by these missions can be
accommodated with a single MDS framework. For these
reasons both flight and ground capabilities must be designed
for a shared architecture.

Theme: State & Models are Central

System state and models form the foundation forinformation
processing-MDS is founded upon a state-based
architecture, where state is a representation of the
momentary condition of an evolving system. System states
include device operating modes, device health, resource
levels, attitude and trajectory, temperatures, pressures, etc,
as well as environmental states such as the motions of
celestial bodies and solar flux. Some aspects of system state
are best described as functions of other states; e.g., pointing
can be derived from attitude and trajectory.

State representations are closed in the sense that nothing of
relevance to the system is left out. While there may be
elements of a project outside the MDS purview, the external
elements are described at least by their visible behavior.

n

Figure 2. System state is the architectural
centerpiece for information processing. State is a

representation of of the momentary condition of an
evolving system.

In all cases in MDS state is accessible through state
variables (as opposed to a program’s local variables), and
state evolution is described on state timelines. State
variables are a complete representation of the total system,
and state timelines are a complete record of a system’s
history. They capture current and past estimates, future
predictions and plans, and past experience. State timelines
provide the fundamental coordinating mechanism since they
describe both knowledge and intent. This information,
together with models of state behavior, provides everything
needed to predict and plan, and it is available centrally in an
internally consistent form.

State timelines are also the objects of a central uniform
mechanism of information exchange between flight and
ground, largely supplanting conventional engineering data
traffic in both directions. For instance, telemetry can be
accomplished by relaying state histories to the ground, and
communication schedules can be relayed as state histories to
the spacecraft. Timelines are relatively compact
representation of state history, because states evolve only in
particular and generally predictable ways. That is, they can
be modeled. Therefore, timelines can be transported much
more compactly than conventional time sampled data.

A state-based architecture implies the need for models since
models describe how a system’s state evolves. Together,
state and models supply what is needed to operate a system,
predict future state, control toward a desired state, and
assess performance.

Figure 3. This diagram emphasizes several architectural themes: the central role of state knowledge and
models, goal-directed operation, separation of state determination from control, and closed-loop control.

-heme: Explicit Use of Models or any of several forms, as long as they separate the domain

Express domain knowledge explicitly in models rather than
implicitly in program logic-Much of what makes software
different from mission to mission is domain knowledge
about instruments and actuators and sensors and plumbing
and wiring and many other things. This knowledge includes
relationships such as how power varies with solar incidence
angle, conditions such as the fact that gyros saturate above a
certain rate, state machines that prescribe safe sequences for
valve operation, and dynamic models that predict how long
a turn will take. Conventional practice has been to develop
programs whose logic implicitly contains such domain
knowledge, but this expresses the knowledge in a “hidden”
form that is hard to validate and hard to reuse. In fact, it is
often hard to discern even that some assumed domain
knowledge has been applied. One might see in the code, for
instance, that an important command is issued twice and
gather nothing further from it. Behind this innocent act,
however, is a presumed attempt to be sure the command
takes effect, which implies further that commands are
assumed unreliable, but not so much so that the likelihood of
a second failed command is acceptably small. This leads one
immediately into questioning the nature and validity of this
assumed model, which is nowhere to be found.

In contrast, MDS advocates that domain knowledge be
represented more explicitly in inspectable models. Such
models can be tables or functions or rules or state machines

knowledge from the general logic for applying that
knowledge to solve a problem. The task of customizing
MDS for a mission, then, becomes largely a task of defining
and validating models.

Theme: Coal-Directed Operation

Operate missions via specifications of desired state rather
than sequences of actions-Traditionally, spacecraft have
been controlled through linear (non-branching) command
sequences that have been carefully designed on the ground.
Moreover, most commands only specify actions to take -
usually in an open loop manner, and often under
assumptions of a particular prior state. Such design is
difficult for two reasons. First, ground must predict
spacecraft state for the time at which the sequence is
scheduled to start, and that’s difficult to know with
confidence because of flighuground communication
limitations (data rate and light-time delay). Second, in the
event that the actual spacecraft state is significantly different
than the predicted state at any time during execution, the
sequence should be designed to fail rather than chance doing
something harmful. This is usually accomplished outside the
sequence in a separate concurrent fault monitoring system,
which then steps in after the sequence is terminated to
impose a substantially different model of control on the
system - one generally incompatible with sequencing.

MDS, in contrast, controls state---both flight and ground
state“via “goals”. A goal is defined as a prioritized
constraint on the value of a state variable during a time
interval. The time interval is allowed to float, subject to
temporal constraints. A goal differs from a command in that
it specifies intent in the form of desired state. Such goal-
directed operation is simpler than traditional sequencing
because a goal is easier to specify than the actions needed to
accomplish it. Importantly, goals specify only success
criteria; they leave options open about the means of
accomplishing the goal and the possible use of alternate
actions to recover from problems. A goal is a unifying
concept that encompasses daily operations, maintenance and
calibration, resource allocation, flight rules, and fault
responses. Of course, all of this begs the question of who or
what elaborates a goal into a program of actions, which
brings us to closed-loop control and goal-achieving
modules.

Theme: Closed Loop Control

Design for real-time reaction to changes in state rather than
for open-loop commands o r earth-in-the-loop control-
Goal-directed operation implies closed-loop control. In
MDS a state controller is termed a goal-achieving module
(GAM). A GAM controls state by comparing present state
(or predicted future state) to desired state, then deciding how
to change the state if necessary, then issuing either sub-goals
(with appropriate temporal constraints) to lower-level
GAMs or issuing direct low-level actions (i.e., primitive
actions). When a GAM accepts a goal it must either achieve
the goal or responsibly report that it cannot. A GAM’S logic
can be arbitrarily simple or sophisticated, but it must always
keep the goal issuer informed about the goal’s status.

Most GAMs achieve their goals by issuing sub-goals, thus
creating a hierarchy of GAMs. Naturally, the bottom layer of
GAMs bottoms out in primitive actions. Importantly, GAMs
can report why they acted as they did in terms of what
discrepancies between state and goals prompted action, and
what sub-goals or commands were issued in response. Also,
since GAMs are self-checking by definition, goal failures
will be visible (through goal status) during testing.

Theme: Real-Time Resource Management

Resource usage must be authorized and monitored by a
resource marzager-“Resources” are things like available
battery energy, power, fuel, memory, thermal margin, etc.
They are any state, in fact, that is affected by other states in
a potentially conflicting way. Overuse of spacecraft
resources can be disastrous, such as accidentally using too
much power near the time of a critical orbit insertion
maneuver, causing the spacecraft power bus to trip. For
reasons like this ground operators have tended to be very
conservative about resource usage, especially given their
time-delayed knowledge of it. However, such conservative
operation limits the amount of science data acquisition and
return. especially during periods of great opportunity, such

as during a fly-by or a short-lived science event.

MDS avoids this kind of operational dilemma through a
resource management mechanism that prevents overuse,
even if a resource is accidentally oversubscribed.
Specifically, resource-using activities are forced to obtain a
“ticket” in order to use a given resource, much as one
obtains a file descriptor in order to access a file. An activity
must state to a resource manager the amount of resource and
the time interval when it is needed, and the ticket is issued
only if the usage does not conflict with any other higher-
priority usage. Further, if measurements show that more of a
resource is being used than was ticketed (such as might
occur from an unexplained power drain), the manager can
disable one or more tickets until an adequate margin is
recovered. Because a resource manager always knows the
available amount, other activities can be triggered to
opportunistically use the resource, thereby increasing
science data return.

A resource manager is just another GAM, except that is
deals in constraints on allowable states instead of constraints
on the state itself.. Issuing a ticket is the means by which it
exercises this control. By treating resource management in
this way it becomes a participant in the larger state
coordination process, rather than a separate additional
mechanism.

Theme: Separate State Determination from State Control

For consistency, simplicity and clarity, separate state
determination logic from control logic-It’s not unusual to
see software that co-mingles control logic with state
determination logic, but this practice is usually a bad idea
for three reasons. First, if two or more controllers each make
their own private determination for the same state variable,
their estimates may differ, potentially leading to conflicting
control actions. Second, mixing two distinct tasks in the
same module makes the code harder to understand and less
reusable. Third, these two tasks are an ill fit in the same
module because control has a hierarchical structure based on
delegation of authority whereas state determination has a
network structure based on pathways of interaction
mechanisms (electrical, thermal, etc.).

Architecturally, MDS separates state determination from
state control, coupled only through state variables. State
determination is a process of interpreting measurements to
generate state knowledge, and the process may combine
multiple sources of evidence into a determination of state,
supplied to a state variable as an estimate. Control, in
contrast, attempts to achieve goals by issuing commands and
sub-goals that should drive estimated state toward desired
state. Keeping these two tasks separate simplifies design,
programming, and testing, and also allows for independent
improvements.

Figure 4. An architecture that doesn't express the
amount of uncertainty in state estimates prevents
control systems from exercising caution during
periods of higher-than-acceptable uncertainty.

Table 1. Fault protection is an integral part of
design, not an add-on; its elements appear throughout

the architectural elements.

An added benefit is to avoid the temptation often
encountered in designs to warp an estimate to meet the
objectives of control. For instance, in order to attenuate a
controller's superfluous reactions to noise, an estimate might
be smoothed by lowering gains in the estimator. Not only
does this link competing performance criteria in a single
parameter, but the system is now deprived of accurate
information about this state. Keeping state determination
separate does not prevent this distortion, but it does express
state knowledge in a public and uniform manner that permits
a consistent pattern of testing designed to identify such
breaches. Theme: Integral Fault Protection

Fault protection must be an integral part of the design, not
an add-on-Fault protection, which includes fault detection,
localization, and recovery, has generally been treated as an
add-on to a basic command & control system. As such, it
was designed as an adjunct to the control system and usually
arrived later in the project cycle. Such was the case for the
Cassini attitude and articulation control system, and an
interesting thing happened when fault protection was first
enabled: numerous faults were detected in a control system
that had already undergone a fair amount of testing. The
Cassini AACS team learned more in that month than they
had in the previous six months because they finally had
independent detailed monitoring of system behavior.

In MDS fault protection will be an integral part of the
design-not an add-ow-because it is an essential part of
robust control and because it is extremely valuable during
system testing. Goal-achieving modules in MDS need at
least some minimum level of fault detection since they must
report when an active goal is not being achieved. GAMS
may also provide recovery strategies ranging from very
simple to very sophisticated. In any case, this is always
accomplished entirely within the same context and
framework as normal operations, and it permits fault
recovery that restores disrupted operations. Re-establishing
a sequence after a fault is no longer a heroic effort. It is
simply the way the system works all the time.

Theme: Acknowledge State Uncertainty

State determination must be honest about the evideuce;
state estimates a re not facts-State values are rarely known
with certainty, but a lot of software effectively pretends that
they are by treating state estimates as facts. However,
disastrous errors can result when control decisions are based
on highly uncertain state. For example, it is probably unwise
to perform a main-engine burn when the estimated position
of the engine gimbals is below some minimum certainty.
Uncertainty can arise in several ways, sometimes as
conflicting evidence, sometimes through characteristic
degradation of sensors, and sometimes during periods of
rapid dynamic change.

MDS takes the position that a level of certainty should
accompany every state estimate. State determination must be
honest about what the evidence is telling it. If there are two
credible pieces of evidence that conflict, and there's no
timely way to reconcile the conflict, then the resulting state
estimate must have an appropriately reduced level of
certainty. Similarly, control must take into account the
certainty level of the state estimates upon which it is basing
a decision. If certainty drops below some context-specific
minimum, then control must react appropriately, perhaps by
attempting an alternate approach or by abandoning a goal
entirely.

Uncertainty can be expressed in a number of ways, ranging
from complete probability distributions to a simple
enumeration of possible values. It isn't essential that the
representation be rigorously statistical; often a heuristic
criterion will do. The only rule is to represent the
uncertainty in state knowledge effectively.

Theme: Separate Data Management from Data Transport

Data management duties and structures should be
separated from those of data transport-Flightlground data
management has long been tightly coupled with data
transport issues, largely because such capabilities evolved
from a time when flight processors were extremely limited.
This resulted in an architecturally flattened implementation
approach where, for example, application code was built
around the CCSDS packet format. While such designs had
some justification in the speed and memory constraints of
earlier missions, the time has come to adopt a cleaner
layered separation and prepare for the day when spacecraft
are in fact nodes in an inter-planetary network.

MDS clearly distinguishes between data management and
data transport. The former elevates data products as entities
in their own right, as objects and files that can be updated
and summarized and aged, and that may or may not be
destined for the ground or some other recipient. In fact, data
management is a service that transcends the flight-ground
divide so that data products are treated consistently in all

places. Data transport, in contrast, can access any data
product and serialize it for transport between flight and
ground. Packet formats and link protocols are completely
hidden from the level of data management. Decoupling these
two capabilities keeps the design and testing simpler for
each and allows for independent improvements.

A further value in decoupling occurs due to the fundamental
difference in nature of these two domains at the level of
system coordination. In its fullest realization, space data
transport must take its place as a peer in the larger data
transport network covering everything from local hardwire
communication within a system, to proximity links between
sister vehicles, to lander-orbiter links at another planet, to
links between planets. Spanning this vast range with its
attendant physical exigencies makes quality of service a vital
component of any data transport framework that is
attempting to pull such a network together. Quality of
service, in turn, must be a visible participant in the
coordination of system activities, whether it be configuring
radio equipment, pointing an antenna, or evaluating link
characteristics. As prescribed, this is accomplished through
goals. That is, quality of service is a state.

Data management, too, resides in a physical realm that links
its actions to the rest of the system and demands that it
participate in coordination processes. In this case the status
of data products (existence, content, size, importance,
location, and so on) collectively comprise a set of states.
Since the goal of most JPL missions is the collection of data,
goals on these data product states become the key driver to
most other mission activities. Interactions and trades
between them can be coordinated entirely within the goal-
directed architecture.

Bringing the whole of system functionality within the fold
would not be possible without the clean separation of data
management from data transport.

Theme: Join Navigation with Attitude Control

Navigation and attitude control must build from a common
mathematical base--Navigation and attitude control have
been weakly coupled on most JPL missions because, in
empty space, they operate on vastly different time scales and
their dynamics usually don't greatly affect each other. As
such, navigation software and attitude control software have
been largely independent development efforts and the
interfaces between them have been ad hoc. In upcoming
missions, however, the coupling becomes much tighter. For
example, escape velocity near an asteroid is so small that
firing thrusters for attitude control can significantly affect
the trajectory of an orbiting spacecraft. Likewise, docking
with another vehicle, as in a sample-return mission, requires
navigation and attitude corrections on similar time scales.

The approach that MDS is taking here, as in other areas, is

to design common architectural mechanisms for common
problems. Since the same forces influence navigation and
attitude control, the architecture must allow for a common
model; since both are solving geometry problems, the
architecture must provide for common solvers.

Theme: Instrument the Software

Instrument the software to gain visibility into its operation,
not just during testing but also during operation-Perhaps
the most vexing problem that operators face during a
mission emergency is in not having enough information
about what’s happening inside the spacecraft to explain
some anomalous behavior. Software developers face the
same problem during system testing (albeit in less stressful
circumstances) and they traditionally address the problem by
adding temporary, ad hoc “instrumentation”, i.e., software
instructions that output some internal state. Such
instrumentation is often removed later, either because it
generates too much output or because it reduces
performance or because it bypasses the downlink subsystem,
outputting directly to a testbed console. Such adding and
removing of temporary code is messy at best and error-prone
at worst.

To address the need in a standard way-as Mars Pathfinder
and Deep Space One did-”DS defines an “event logging
framework” (ELF) that provides a standard mechanism for
logging noteworthy events, whether generated on the flight
side or ground side. Importantly, ELF allows operators to
control the nature and amount of logging by controlling
“entry policy” parameters such as event severity level, event
IDS, and event reporting frequency. ELF reporting functions
are designed for speed in discarding events disabled by the
entry policy, so instrumentation (i.e., ELF calls) can
generally be left in place, even in flight code. The net result
is that software instrumentation is encouraged because it can
be controlled at run time by ground operators and therefore
can remain as a permanent part of the software, providing
value not just during system testing but also during mission
operations.

Logically, ELF provides a specialized interface to Data
Management and therefore capitalizes on its capabilities for
accumulating value histories, for summarizing them, and for
discarding old and/or less important data products in order
to make room for new data products.

Theme: Upward Compatibility

Design interfaces to accommodate foreseeable advances in
t echnologFMDS is intended to serve missions for many
years to come, and during that time there will be numerous
advances in software technology for control systems, fault
detection & diagnosis, planning & scheduling, databases,
communication protocols, etc. MDS must be prepared to
exploit such technologies else it will become an obstacle

rather than an enabler for increasingly challenging missions,
but MDS also needs to maintain some architectural stability
to amortize its cost over its missions. The strategy for
achieving this centers around careful design of architectural
interfaces, behind which a variety of technical approaches
can be used. Specifically, MDS designers consult with
researchers to understand how software interfaces may need
to evolve, and then implement a restricted subset of an
interface using current mission-ready technology. When the
more advanced technology becomes mission-ready, they
implement the fuller interface in an upward compatible
manner, namely, in a manner that still works for interface
clients that use the restricted subset. Thus, interface client
software is not forced to change on the same schedule as
interface provider software.

The value of upward compatibility is powerfully illustrated
in the history of IBM. In 1964 when IBM introduced the
System/360 architecture, they transformed the computer
industry with the first “compatible” family of computers.
Software and peripherals worked virtually interchangeably
on any of the five original processors, so customer
investments were preserved when they upgraded to a more
powerful processor. IBM continued to improve the
technology over the years, but always within the Systed36O
architecture and its extensions. Although the MDS
architecture applies to a much smaller marketplace, the
benefits of upward compatibility make sense for MDS
customers and providers.

5. CUSTOMER BENEETS

The main value of MDS is that it should enable customer
missions to focus on mission-specific design and
development without having to create and test a supporting
infrastructure. Customers will receive a set of pre-integrated
and pre-tested frameworks, complete with executable
example uses of those frameworks running on a simulated
spacecraft and mission. These frameworks will be based on
an object-oriented design described in Unified Modeling
Language (UML) [Z], the lingua franca of MDS software
design and scenario description.

As a project, MDS is balancing a long-term architectural
vision against a near-term commitment to its first customer
mission, Europa Orbiter, scheduled to launch in 2003. Such
commitments help focus MDS design efforts on pragmatic,
well-understood mechanisms for supporting the architectural
themes.

6. RELATED WORK

In a 1995 joint study between NASA Ames and JPL known
as the New Millennium Autonomy Architecture Prototype
(NewMAAP) a number of existing concepts for improving
flight software were brought together in a prototype form.
These concepts included goal-based commanding, closed-
loop control, model-based diagnosis, onboard resource

management, and onboard planning. When the Deep Space
One (DS-1) mission was subsequently announced as a
technology validation mission, the NewMAAP project
rapidly segued into the Remote Agent project [3]. In May
1999 the Remote Agent experiment (RAX) flew on DS-1
and provided the first in-flight demonstration of the
concepts. The MDS project, which is populated with many
people who worked on or with RAX, was established in
April 1998 to define and develop an advanced multi-mission
data system that unifies the flight, ground, and test elements
in a common architecture. That architecture is shaped with
the themes described in this paper, some of which were
explored and refined by the RAX experience.

at Bell Laboratories on the monitoring of telephone
switching systems and on the design and development of
R++, a rule-based extension to C++. Dan holds a BS in
electrical engineering from Rose-Hulman Institute of
Technology, a M S in computer engineering from Stanford
University, and a Ph.D. in computer science from The
University of Texas at Austin.

Robert Rastnussen . . .

MDS shares some architectural concepts with the Altairis
Mission Control System (MCS) 111, a commercial system
that emphasizes object-oriented design, finite state models,
state-based control, separation of mission-specific models
from reusable software, and CORBA-compliant inter-object
communication. MCS particularly highlights the use of finite
state models in preference to rule-based knowledge
representation, citing the limitations of rules in representing
cohesive “models” that are well organized, easily inspected,
and reusable.

7. ACKNOWLEDGEMENTS

The research and design described in this paper was carried
out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration.

REFERENCES
[11 “Altairis Mission Control System”, Altair Aerospace
Corporation, httD://www.altaira.com/AMCS/amcs.html,
1999.

[2] “What is OMG-UML and why is it important?”, Object
Management Group,
http://www.omg.org/news/pr97/umlprimer.html, 1997.

[31 “An Autonomous Spacecraft Agent Prototype,” B. Pell,
D. Bernard, S. Chien, E. Gat, N Muscettola, P. Nayak, M.
Wagner, B. Williams, Proceedings of the First Annual
Workshop on Intelligent Agents, Marina Del Rey, CA, 1997.

Daniel Dvorak is a researcher in
the Exploration Systems
Autonomy section at the Jet
Propulsion Laboratory,
California Institute of
Technology, where his interests
have focused on state estimation,
fault detection, and diagnosis, as
well as verification of autonomous
systems. Prior to 1996 he worked

\ ‘ /

Allan Sacks . . .

http://www.omg.org/news/pr97/umlprimer.html

